Pathologies of the volume function

John Lesieutre
(with Valentino Tosatti, Simion Filip)

February 16, 2024

litaka dimension

- X smooth projective variety, D a divisor.
- Theorem: There are constants C_{i} such that for large divisible m, $C_{1} m^{\kappa}<h^{0}(X, m D)<C_{2} m^{\kappa}$.
- This κ is the litaka dimension of D.

Numerical invariance

- This is not a numerical invariant: it can happen that $D \equiv D^{\prime}$ but different litaka dimension.
- On threefold: two numerically equivalent divisors, one rigid and one which moves in a pencil.
- We want a numerically invariant version ν

Numerical dimension: sections ([Nakayama])

- Fix sufficiently ample A.
- Look at growth of $h^{0}(\lfloor m D\rfloor+A)$ as m increases.
- How does it behave?

Nakayama lemma

- Thm (Nakayama): If $h^{0}(\lfloor m D\rfloor+A)$ is not bounded in m, then $h^{0}(\lfloor m D\rfloor+A)>C m$ for some C.

Proposition 3.3.2. Let X be a smooth projective variety and let D be a pseudo-effective \mathbb{R}-divisor. Let B be any big \mathbb{R}-divisor.

If D is not numerically equivalent to $N_{\sigma}(D)$, then there is a positive integer k and a positive rational number β such that

$$
h^{0}\left(X, \mathcal{O}_{X}(\llcorner m D\lrcorner+\llcorner k B\lrcorner)\right)>\beta m, \quad \text { for all } \quad m \gg 0
$$

Proof. Let A be any integral divisor. Then we may find a positive integer k such that

$$
h^{0}\left(X, \mathcal{O}_{X}(\llcorner k B\lrcorner-A)\right) \geq 0
$$

Thus it suffices to exhibit an ample divisor A and a positive rational number β such that

$$
h^{0}\left(X, \mathcal{O}_{X}(\llcorner m D\lrcorner+A)\right)>\beta m \quad \text { for all } \quad m \gg 0
$$

Replacing D by $D-N_{\sigma}(D)$, we may assume that $N_{\sigma}(D)=0$. Now anolv (V 1 12) of [98]

Background

Question (Nakayama, 2002)

Suppose that D is a pseudoeffective divisor and that A is ample. Then there exist constants C_{1}, C_{2} and a positive integer $\nu(D)$ so that:

$$
C_{1} m^{\nu(D)} \leq h^{0}(\lfloor m D\rfloor+A) \leq C_{2} m^{\nu(D)}
$$

Volume

- Volume of D is $\lim _{m \rightarrow \infty} \frac{h^{0}(m D)}{m^{d} / d!}$.
$-\operatorname{vol}(D+t A)$ for small $t \leftrightarrow h^{0}(m D+A)$ for large m :

$$
\operatorname{vol}\left(D+\frac{1}{m} A\right)=\frac{1}{m^{3}} \operatorname{vol}(m D+A) \approx \frac{1}{m^{3}} h^{0}(m D+A)
$$

Main result

- For each $N \geq 3$ there exists a smooth Calabi-Yau N-fold such that for any $\delta \in\left[1, \frac{N}{2}\right]$ one can find a pseudoeffective \mathbb{R}-divisor D with:

$$
\begin{aligned}
\limsup _{m \rightarrow \infty} \frac{\log h^{0}(X,\lfloor m D\rfloor+A)}{\log m} & =N-\delta \\
\underset{m \rightarrow \infty}{\liminf } \frac{\log h^{0}(X,\lfloor m D\rfloor+A)}{\log m} & =\frac{N}{2} \\
\liminf _{s \rightarrow 0^{+}} \frac{\log \operatorname{vol}(D+s A)}{\log s} & =\delta, \\
\limsup _{s \rightarrow 0^{+}} \frac{\log \operatorname{vol}(D+s A)}{\log s} & =\frac{N}{2}
\end{aligned}
$$

- Volume is C^{1} on the big cone, but not C^{2} in general.
- But what about the pseudoeffective boundary? Could $s \mapsto \operatorname{vol}(D+s A)$ have extra regularity?
- The example: $s \mapsto \operatorname{vol}(D+s A)$ is C^{1} but not $C^{1, \alpha}$ on $[0, \epsilon)$ for any $\alpha>0$.
- (Could it be $C_{\text {loc }}^{1,1}$ inside the big cone?)
- Let X be $(1,1),(1,1),(2,2)$ complete intersection in $\mathbb{P}^{3} \times \mathbb{P}^{3}$.
- This is a smooth CY3, Picard rank 2.
- Studied by Oguiso in connection with Kawamata-Morrison conj.

The example

- It has some birational automorphisms coming from covering involutions.
- Action on $N^{1}(X)$ given by

$$
\tau_{1}^{*}=\left(\begin{array}{cc}
1 & 6 \\
0 & -1
\end{array}\right), \quad \tau_{2}^{*}=\left(\begin{array}{cc}
-1 & 0 \\
6 & 1
\end{array}\right), \quad \phi^{*}=\left(\begin{array}{cc}
35 & 6 \\
-6 & -1
\end{array}\right)
$$

- Composition has infinite order: $\lambda=17+12 \sqrt{2}$.
- Nef cone bounded by H_{1}, H_{2}.
- Psef cone bounded by $(1 \pm \sqrt{2}) H_{1}+(1 \mp \sqrt{2}) H_{2}$.
- Let $D_{+}=c_{1} H_{1}+c_{2} H_{2}$ be divisor in this class.

Cones

- For any line bundle whatsoever on X, you can compute $h^{0}(D)$.
- Pull it back some number of times, it's ample, and then compute h^{0} for ample using Riemann-Roch+Kodaira vanishing!
- HRR on CY3:

$$
\chi(D)=\frac{D^{3}}{6}+\frac{D \cdot c_{2}(X)}{12}
$$

Let's compute

- Suppose our ample is $A=M_{1} D_{+}+M_{2} D_{-}$.
- We need to compute $h^{0}(\lfloor m D\rfloor+A)$.
- How many times to pull back? Looks like a mess, but there's an invariant quadratic form: the product of the coefficients when you work in the eigenbasis.

$$
\phi^{*}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)
$$

Let's compute, II

- $m D_{+}+A=\left(m+M_{1}\right) D_{+}+M_{2} D_{-}$.
- The pullback that's ample has the two coefficients roughly equal, about

$$
\left(\sqrt{\left(m+M_{1}\right) M_{2}}\right) D_{+}+\left(\sqrt{\left(m+M_{1}\right) M_{2}}\right) D_{-}
$$

- Then $h^{0}\left(\left\lfloor m D_{+}\right\rfloor+A\right) \approx C m^{3 / 2}$.

Extensions of the computation

- We used the fact that D_{+}and D_{-}that span an eigenspace intersecting the ample cone.
- In this case, an eigenvector always has $\nu_{\text {vol }}\left(D_{+}\right)=\frac{\operatorname{dim} X}{2}$ if $\lambda_{1}(f)=\lambda_{1}\left(f^{-1}\right)$.

Another example

- Let X be a $(2,2,2,2)$ hypersurface in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$; key aspects of geometry worked out by Cantat-Oguiso.
- It's a smooth CY3.
- $(\mathbb{Z} / 2 \mathbb{Z})^{* 4} \subset \operatorname{Bir}(X)$ coming from covering involutions.
- Kawamata-Morrison conjecture is true, so we can still compute volume of any class very easily in principle...
- There are some distinguished classes:
- eigenvectors, which all have $\operatorname{vol}(D+t A) \sim C t^{3 / 2}$;
- semiample $\pi_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)+\pi_{j}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$, plus their orbits under $\operatorname{Bir}(X)$, which all have $\operatorname{vol}(D+t A) \sim C t$.

First picture: the eigenvectors

Second picture: the semiample type

Volume near the boundary

- There are some "circles" on the boundary of $\overline{E f f}(X)$ on which both eigenvectors and semiample type are dense.
- The former have $\operatorname{vol}(D+t A) \sim C t^{3 / 2}$, the latter have vol $(D+t A) \sim C t$.
- How is this possible?
- Because the volume function is so easy to compute numerically, we can plot it!

Volume near the boundary

A quotient of the movable cone

- Action of $\operatorname{Bir}(X)$ preserves a quadratic form of signature $(1,3)$ on $N^{1}(X)$ (Cantat-Oguiso).
- Restricting to classes of norm 1 and taking quotient of movable cone by this action, we obtain action of $\operatorname{Bir}(X)$ on a (non-compact) hyperbolic 3-manifold Σ.
- Volume function descends to vol : $\Sigma \rightarrow \mathbb{R}_{\geq 0}$.

How to imagine these classes

- Paths $D+s A$ in $N^{1}(X)$ determine a geodesic on Σ after normalization:

$$
\gamma(s)=\frac{D+s A}{\sqrt{Q(D+s A, D+s A)}} \approx \frac{D+s A}{\sqrt{s}}
$$

- Then

$$
\operatorname{vol}(D+s A)=\operatorname{vol}(\sqrt{s} \gamma(s))=s^{3 / 2} \operatorname{vol}(\gamma(s))=s^{3 / 2} \overline{\operatorname{vol}}([\gamma(s)])
$$

- When $[\gamma(s)]$ is near the middle of Σ, we see $s^{3 / 2}$ behavior, but volume gets larger when the geodesic goes out a cusp.

Recurrent geodesics

- If geodesic stays in a compact region (typical, e.g. eigenvectors), we see $s^{3 / 2}$ growth as $s \rightarrow 0$.
- But if a geodesic wanders out a cusp, we see the larger volume s^{1}.
- Every geodesic ray is either returns infinitely often to a compact set, or goes into the cusp.
- In particular, we either see $\operatorname{vol}(D+s A) \sim s$ growth, or $\operatorname{vol}(D+s A) \sim C s^{3 / 2}$ along an infinite subsequence of s.

Cusp excursions

- Suppose ℓ_{i} is a sequence of (sufficiently large) positive reals. For any $x_{0} \in \mathcal{M}^{c c}$ and open $U \subset T_{x_{0}} M$ three is an infinite geodesic ray γ starting
- initial tangent vector is in U;
- $\gamma=\bigcup\left[x_{i}, x_{i+1}\right)$ with $\ell_{\left[x_{i}, x_{i+1}\right)}=\ell_{i}+O(1)$ and $d\left(x_{0}, x_{i}\right)=O(1)$;
- $d\left(x_{0},-\right)$ on $\left(x_{i}, x_{i+1}\right)$ is roughly linearly growth out to $\frac{1}{2} \ell_{i}$ and then decreasing back.
- The key technical ingredient is "gluing geodesics": we write down each desired cusp excursion separately, and as long as the endpoint data are very close, there is a nearby geodesic approximating the union.

From volume to sections

- We get oscillation of vol $(D+s A)$, hence m^{3} vol $\left(D+\frac{1}{m} A\right)$ if we make sure oscillations occur when $s=\frac{1}{m}$.
- We also need to bound errors of (a) $h^{0}(X,\lfloor m D\rfloor+A)$ vs vol $(\lfloor m D\rfloor+A)$ and (b) $\operatorname{vol}(\lfloor m D\rfloor+A)$ vs $\operatorname{vol}(m D+A)$.
- The first is fairly easy since we can compute h^{0} of the ample pullback using HRR; one term is the volume and we bound the error.
- For the second we need to check how far rounding moves in the hyperbolic distance and make sure it doesn't interfere.
- (Both are OK.)

$$
\begin{aligned}
& \kappa_{\sigma}^{+}(D)=\min \left\{k: \limsup _{m \rightarrow \infty} \frac{h^{0}(\lfloor m D\rfloor+A)}{m^{k}}<\infty\right\} \\
& \kappa_{\sigma}(D)=\max \left\{k: \limsup _{m \rightarrow \infty} \frac{h^{0}(\lfloor m D\rfloor+A)}{m^{k}}>0\right\} \\
& \kappa_{\sigma}^{-}(D)=\max \left\{k: \liminf _{m \rightarrow \infty} \frac{h^{0}(\lfloor m D\rfloor+A)}{m^{k}}>0\right\}
\end{aligned}
$$

In our example:

$$
\kappa_{\sigma}^{\mathbb{R},-}(D)=\left\lfloor\frac{N}{2}\right\rfloor, \quad \kappa_{\sigma}^{\mathbb{R}}(D)=\kappa_{\sigma}^{\mathbb{R},+}(D)=N-1
$$

So these things are not the same.

A question of Fujino

- Let X be smooth projective over \mathbb{C} and D pseudoeffective. Then there exist $m_{0} \geq 1, c>0$, and ample A so that

$$
h^{0}\left(X,\left\lfloor m m_{0} D\right\rfloor+A\right) \geq c m^{\kappa_{\sigma}(D)}
$$

- We show that this fails starting in dimension 5 .

