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Iitaka dimension

▶ X smooth projective variety, D a divisor.

▶ Theorem: There are constants Ci such that for large divisible m,
C1m

κ < h0(X ,mD) < C2m
κ.

▶ This κ is the Iitaka dimension of D.



Numerical invariance

▶ This is not a numerical invariant: it can happen that D ≡ D ′ but different
Iitaka dimension.

▶ On threefold: two numerically equivalent divisors, one rigid and one which
moves in a pencil.

▶ We want a numerically invariant version ν



Numerical dimension: sections ([Nakayama])

▶ Fix sufficiently ample A.

▶ Look at growth of h0(⌊mD⌋+ A) as m increases.

▶ How does it behave?



Nakayama lemma

▶ Thm (Nakayama): If h0(⌊mD⌋+ A) is not bounded in m, then
h0(⌊mD⌋+ A) > Cm for some C .



Background

Question (Nakayama, 2002)
Suppose that D is a pseudoeffective divisor and that A is ample. Then there
exist constants C1,C2 and a positive integer ν(D) so that:

C1m
ν(D) ≤ h0(⌊mD⌋+ A) ≤ C2m

ν(D)



Volume

▶ Volume of D is lim
m→∞

h0(mD)

md/d !
.

▶ vol(D + tA) for small t ↔ h0(mD + A) for large m:

vol

(
D +

1

m
A

)
=

1

m3
vol(mD + A) ≈ 1

m3
h0(mD + A)



Main result

▶ For each N ≥ 3 there exists a smooth Calabi–Yau N-fold such that for any
δ ∈

[
1, N

2

]
one can find a pseudoeffective R-divisor D with:

lim sup
m→∞

log h0(X , ⌊mD⌋+ A)

logm
= N − δ

lim inf
m→∞

log h0(X , ⌊mD⌋+ A)

logm
=

N

2

lim inf
s→0+

log vol(D + sA)

log s
= δ,

lim sup
s→0+

log vol(D + sA)

log s
=

N

2



Regularity of volume

▶ Volume is C 1 on the big cone, but not C 2 in general.

▶ But what about the pseudoeffective boundary? Could s 7→ vol(D + sA) have
extra regularity?

▶ The example: s 7→ vol(D + sA) is C 1 but not C 1,α on [0, ϵ) for any α > 0.

▶ (Could it be C 1,1
loc inside the big cone?)



Warm-up

▶ Let X be (1, 1), (1, 1), (2, 2) complete intersection in P3 × P3.

▶ This is a smooth CY3, Picard rank 2.

▶ Studied by Oguiso in connection with Kawamata–Morrison conj.



The example

▶ It has some birational automorphisms coming from covering involutions.

▶ Action on N1(X ) given by

τ ∗1 =

(
1 6
0 −1

)
, τ ∗2 =

(
−1 0
6 1

)
, ϕ∗ =

(
35 6
−6 −1

)
▶ Composition has infinite order: λ = 17 + 12

√
2.

▶ Nef cone bounded by H1, H2.

▶ Psef cone bounded by (1±
√
2)H1 + (1∓

√
2)H2.

▶ Let D+ = c1H1 + c2H2 be divisor in this class.



Cones



The trick

▶ For any line bundle whatsoever on X , you can compute h0(D).

▶ Pull it back some number of times, it’s ample, and then compute h0 for
ample using Riemann-Roch+Kodaira vanishing!

▶ HRR on CY3:

χ(D) =
D3

6
+

D · c2(X )

12
.



Let’s compute

▶ Suppose our ample is A = M1D+ +M2D−.

▶ We need to compute h0(⌊mD⌋+ A).

▶ How many times to pull back? Looks like a mess, but there’s an invariant
quadratic form: the product of the coefficients when you work in the
eigenbasis.

ϕ∗ =

(
λ 0
0 λ−1

)



Let’s compute, II

▶ mD+ + A = (m +M1)D+ +M2D−.

▶ The pullback that’s ample has the two coefficients roughly equal, about(√
(m +M1)M2

)
D+ +

(√
(m +M1)M2

)
D−

▶ Then h0(⌊mD+⌋+ A) ≈ Cm3/2.



Extensions of the computation

▶ We used the fact that D+ and D− that span an eigenspace intersecting the
ample cone.

▶ In this case, an eigenvector always has νvol(D+) =
dimX

2
if λ1(f ) = λ1(f

−1).



Another example

▶ Let X be a (2, 2, 2, 2) hypersurface in P1 × P1 × P1 × P1; key aspects of
geometry worked out by Cantat–Oguiso.

▶ It’s a smooth CY3.

▶ (Z/2Z)∗4 ⊂ Bir(X ) coming from covering involutions.

▶ Kawamata–Morrison conjecture is true, so we can still compute volume of
any class very easily in principle. . .



Two kinds of divisors on the psef boundary

▶ There are some distinguished classes:
▶ eigenvectors, which all have vol(D + tA) ∼ Ct3/2;

▶ semiample π∗
i (OP1(1)) + π∗

j (OP1(1)), plus their orbits under Bir(X ), which
all have vol(D + tA) ∼ Ct.



First picture: the eigenvectors



Second picture: the semiample type

Blue are eigenvectors, red are semiample type.



Volume near the boundary

▶ There are some “circles” on the boundary of Eff(X ) on which both
eigenvectors and semiample type are dense.

▶ The former have vol(D + tA) ∼ Ct3/2, the latter have vol(D + tA) ∼ Ct.

▶ How is this possible?

▶ Because the volume function is so easy to compute numerically, we can plot
it!



Volume near the boundary



A quotient of the movable cone

▶ Action of Bir(X ) preserves a quadratic form of signature (1, 3) on N1(X )
(Cantat–Oguiso).

▶ Restricting to classes of norm 1 and taking quotient of movable cone by this
action, we obtain action of Bir(X ) on a (non-compact) hyperbolic
3-manifold Σ.

▶ Volume function descends to vol : Σ → R≥0.



How to imagine these classes

▶ Paths D + sA in N1(X ) determine a geodesic on Σ after normalization:

γ(s) =
D + sA√

Q(D + sA,D + sA)
≈ D + sA√

s

▶ Then

vol(D + sA) = vol
(√

sγ(s)
)
= s3/2 vol(γ(s)) = s3/2vol([γ(s)])

▶ When [γ(s)] is near the middle of Σ, we see s3/2 behavior, but volume gets
larger when the geodesic goes out a cusp.



Recurrent geodesics

▶ If geodesic stays in a compact region (typical, e.g. eigenvectors), we see s3/2

growth as s → 0.

▶ But if a geodesic wanders out a cusp, we see the larger volume s1.

▶ Every geodesic ray is either returns infinitely often to a compact set, or goes
into the cusp.

▶ In particular, we either see vol(D + sA) ∼ s growth, or vol(D + sA) ∼ Cs3/2

along an infinite subsequence of s.



Cusp excursions

▶ Suppose ℓi is a sequence of (sufficiently large) positive reals. For any
x0 ∈ Mcc and open U ⊂ Tx0M three is an infinite geodesic ray γ starting
▶ initial tangent vector is in U;

▶ γ =
⋃
[xi , xi+1) with ℓ[xi ,xi+1) = ℓi + O(1) and d(x0, xi ) = O(1);

▶ d(x0,−) on (xi , xi+1) is roughly linearly growth out to 1
2ℓi and then

decreasing back.

▶ The key technical ingredient is “gluing geodesics”: we write down each
desired cusp excursion separately, and as long as the endpoint data are very
close, there is a nearby geodesic approximating the union.



From volume to sections

▶ We get oscillation of vol(D + sA), hence m3 vol
(
D + 1

m
A
)
if we make sure

oscillations occur when s = 1
m
.

▶ We also need to bound errors of (a) h0(X , ⌊mD⌋+ A) vs vol(⌊mD⌋+ A)
and (b) vol(⌊mD⌋+ A) vs vol(mD + A).

▶ The first is fairly easy since we can compute h0 of the ample pullback using
HRR; one term is the volume and we bound the error.

▶ For the second we need to check how far rounding moves in the hyperbolic
distance and make sure it doesn’t interfere.

▶ (Both are OK.)



Nakayama’s κσs

κ+
σ (D) = min

{
k : lim sup

m→∞

h0(⌊mD⌋+ A)

mk
< ∞

}
κσ(D) = max

{
k : lim sup

m→∞

h0(⌊mD⌋+ A)

mk
> 0

}
κ−
σ (D) = max

{
k : lim inf

m→∞

h0(⌊mD⌋+ A)

mk
> 0

}
In our example:

κR,−
σ (D) =

⌊
N

2

⌋
, κR

σ (D) = κR,+
σ (D) = N − 1

So these things are not the same.



A question of Fujino

▶ Let X be smooth projective over C and D pseudoeffective. Then there exist
m0 ≥ 1, c > 0, and ample A so that

h0(X , ⌊mm0D⌋+ A) ≥ cmκσ(D)

▶ We show that this fails starting in dimension 5.


