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litaka dimension

» X smooth projective variety, D a divisor.

» Theorem: There are constants C; such that for large divisible m,
Gm® < h°(X, mD) < Com*.

» This k is the litaka dimension of D.



Numerical invariance

» This is not a numerical invariant: it can happen that D = D’ but different
litaka dimension.

» On threefold: two numerically equivalent divisors, one rigid and one which
moves in a pencil.

» We want a numerically invariant version v



Numerical dimension: sections ([Nakayamal)

» Fix sufficiently ample A.
» Look at growth of h°(|mD| + A) as m increases.

» How does it behave?



Nakayama lemma

» Thm (Nakayama): If i°(|mD| + A) is not bounded in m, then
R°(|mD] + A) > Cm for some C.

Proposition 3.3.2. Left X be a smooth projective variety and let D be
a pseudo-effective B-divisor, Let B be any g R-divisor.

If D is not numerically equivalent to N, (D), then there is a positive
integer b and a positive rational nuwmber 3 such that

(X, Ox(LmDo+ ckBL)) = Am, for all m = 0.

Proof. Let A be any integral divisor, Then we may find a positive
integer £ such that

WX Ox(LkBl— A)) = 0.

Thus it suffices to exhibit an ample divisor A and a positive rational
number 7 such that

WX, Ox(LmDo+ A)) = dm for all =g}

Replacing D by D — N,(D), we may assume that N,(D) = 0. Now
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Question (Nakayama, 2002)

Suppose that D is a pseudoeffective divisor and that A is ample. Then there
exist constants C;, C; and a positive integer v(D) so that:

C;m*P) < hO(LmDJ +A) < Com*(P)



Volume

0
» Volume of Dis |im w.
m—oco m /d!

» vol(D + tA) for small t <+ h°(mD + A) for large m:

1 1 1,
vol (D + ;A) = Fvol(mD +A) ~ Fh (mD + A)



Main result

» For each N > 3 there exists a smooth Calabi—Yau N-fold such that for any
6 € [1, %] one can find a pseudoeffective R-divisor D with:

log K°(X, [mD] + A)

lim sup =N-9§
m—sc0 log m
log h°(X, |mD]| + A N
m—00 Iogm 2
I (D + sA
liminf ogvol(D + s ):5,
s—0+ log s
I (D + sA N
lim sup og vol(D + s ):—
550+ log s 2



Regularity of volume

» Volume is C! on the big cone, but not C? in general.

» But what about the pseudoeffective boundary? Could s — vol(D + sA) have
extra regularity?

» The example: s+ vol(D + sA) is C* but not C1* on [0, €) for any a > 0.

> (Could it be C! inside the big cone?)



» Let X be (1,1), (1,1), (2,2) complete intersection in P? x P3.
» This is a smooth CY3, Picard rank 2.

» Studied by Oguiso in connection with Kawamata—Morrison conj.



The example

» It has some birational automorphisms coming from covering involutions.

» Action on N'(X) given by

._ (1 6 c_ (-1 0y (6
=0 —1)0 27\ e 1) Y T \6 -1

» Composition has infinite order: A = 17 + 124/2.
» Nef cone bounded by H;, H-.
» Psef cone bounded by (1 £ v/2)H; + (1 F v/2)Ho.

» Let D, = ¢ H; + oH, be divisor in this class.






» For any line bundle whatsoever on X, you can compute h°(D).

» Pull it back some number of times, it's ample, and then compute h° for
ample using Riemann-Roch+Kodaira vanishing!

» HRR on CY3:
D} D-. e (X)

_6+ 12



Let's compute

» Suppose our ample is A= M;D, + M,D_.
» We need to compute h°(|mD] + A).

» How many times to pull back? Looks like a mess, but there's an invariant
quadratic form: the product of the coefficients when you work in the

eigenbasis.
« (A O
o-( )



Let's compute, Il

» mD, + A= (m+ My)D, + M,D_.
» The pullback that's ample has the two coefficients roughly equal, about

( (m+ Ml)/\/lz) D; + ( (m+ Ml)/\/lz) D_

» Then h°(|mD, | + A) ~ Cm*/2.



Extensions of the computation

» We used the fact that D, and D_ that span an eigenspace intersecting the
ample cone.
__ dim

> In this case, an eigenvector always has v,/(Dy) = 92X if A (f) = A(F 7).



Another example

> Let X be a (2,2,2,2) hypersurface in P! x P! x P! x P!; key aspects of

P R}

geometry worked out by Cantat—Oguiso.
» It's a smooth CY3.
» (Z/2Z)** C Bir(X) coming from covering involutions.

» Kawamata—Morrison conjecture is true, so we can still compute volume of
any class very easily in principle. ..



Two kinds of divisors on the psef boundary

» There are some distinguished classes:
> eigenvectors, which all have vol(D + tA) ~ Ct3/?;

> semiample 7} (Op:1(1)) + 7 (Op1(1)), plus their orbits under Bir(X), which
all have vol(D + tA) ~ Ct.



picture: the eigenvectors




Second picture: the semiample type
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Volume near the boundary

» There are some ‘“circles” on the boundary of Eff(X) on which both
eigenvectors and semiample type are dense.

» The former have vol(D + tA) ~ Ct3/?, the latter have vol(D + tA) ~ Ct.
» How is this possible?

» Because the volume function is so easy to compute numerically, we can plot
it!



near the boundary




A quotient of the movable cone

» Action of Bir(X) preserves a quadratic form of signature (1,3) on N'(X)
(Cantat-Oguiso).

» Restricting to classes of norm 1 and taking quotient of movable cone by this
action, we obtain action of Bir(X) on a (non-compact) hyperbolic

3-manifold X.

» Volume function descends to vol : & — Rx.



How to imagine these classes

» Paths D + sA in N*(X) determine a geodesic on X after normalization:

D + sA ND—l—sA

~

" JQD+sADtsA) s

v(s)

» Then
vol(D + ) = vol (v53(s)) = $¥2vol(3(s)) = s*/¥al([(s)])

» When [y(s)] is near the middle of ¥, we see s3/2 behavior, but volume gets
larger when the geodesic goes out a cusp.



Recurrent geodesics

> If geodesic stays in a compact region (typical, e.g. eigenvectors), we see s>/
growth as s — 0.

» But if a geodesic wanders out a cusp, we see the larger volume s?.

» Every geodesic ray is either returns infinitely often to a compact set, or goes
into the cusp.

> In particular, we either see vol(D + sA) ~ s growth, or vol(D + sA) ~ Cs3/2
along an infinite subsequence of s.



Cusp excursions

» Suppose /; is a sequence of (sufficiently large) positive reals. For any
Xo € M and open U C T, M three is an infinite geodesic ray 7y starting

> initial tangent vector is in U;
> v = U[X,',X,'_H) with f[xi,xl.ﬂ) = f,‘ + O(l) and d(Xo,X,') = 0(1);

» d(xp,—) on (x;,x;+1) is roughly linearly growth out to %E,- and then
decreasing back.

» The key technical ingredient is “gluing geodesics”: we write down each
desired cusp excursion separately, and as long as the endpoint data are very
close, there is a nearby geodesic approximating the union.



From volume to sections

> We get oscillation of vol(D + sA), hence m*vol (D + L A) if we make sure

oscillations occur when s = %

» We also need to bound errors of (a) h°(X, |mD| + A) vs vol(|mD] + A)
and (b) vol(|mD] + A) vs vol(mD + A).

» The first is fairly easy since we can compute h° of the ample pullback using
HRR; one term is the volume and we bound the error.

» For the second we need to check how far rounding moves in the hyperbolic
distance and make sure it doesn't interfere.

» (Both are OK.)



Nakayama's ks

K+ (D) = min {k : Iimsupw < oo}

m— o0 mk
(IlmD| + A
Ko(D) = max {k :limsup % > O}
m—oco m
0 A
k, (D) = max{k :lim infh(LLw > O}
m—0o0 m
In our example:
R,— N R R,+
k, (D) = 5| ky(D)=r,"(D)=N-1

So these things are not the same.



A question of Fujino

» Let X be smooth projective over C and D pseudoeffective. Then there exist
mg > 1, ¢ > 0, and ample A so that

RO(X, [mmoD| + A) > cm"(P)

» We show that this fails starting in dimension 5.



